2020年9月3日木曜日

抵抗器も熱い

まだまだ暑い日が続いてますが、そろそろ秋が近い感じ。朝晩の風は少し涼しくなって来ました。

 私室ではトランジスタアンプと併用しながら真空管アンプで音楽鳴らしています。気分程度の違いですが、先月は消費電力が最小の6AK6-PPが働いていました。今月は気分を変えて6Z-P1のシングルに。シングルアンプですから、出力の有無にかかわらず電力を消費します。音になっていない分はすべて熱です。

 真空管アンプでは、真空管のヒーターの発熱が目立ちますが、それ以外の部分も発熱しています。大型の管では出力管のプレートからの熱も目立ちます。しかしそれ以外の回路の発熱も要注意なのですが、昔は普通はほぼ完全に意識されていませんでした。

 真空管にかぎらず、電子回路のあちこちに抵抗器が使われています。抵抗に電流が流れると{ 電流 × 電圧=電力 }の分の熱が発生します。この熱は抵抗器自体を加熱します。だから電力の大きな抵抗器は温度に注意が必要です。これはトランジスタ回路でも同様、というか、実装密度が高く温度に敏感な分一層要注意だったのです。
 トランジスタは温度で特性の変わるので発熱とその処理を考えるのは当然の事。そしてその心配は一緒に組み込む抵抗器にも及ぶ。

12G-B3/7シングルアンプ 出力管まわりの抵抗の処理

 昔の真空管用の抵抗器は容量の割に外形が大きかったです。そのため大きな表面積から熱を放散することができるので、定格に近い電力でもあまり高温にはなりません。たとえば1/2Wの抵抗は1/2W近い電力で使っても長時間耐えました。ところが最近の小型の抵抗は、短時間ならその電力に耐えるという設定です。1/2Wの抵抗を1/2Wの熱が発生する所に使うと、数分も経たずに非常な高温になります。つまり、抵抗器からの熱の行方も考えて、容量に余裕のある(表面積が大きい)抵抗を使うか、放熱の処理をしなければならないのです。


 抵抗で発生した熱は、一部はリード線を伝わり、残りはその表面から周囲の空気に伝わります。抵抗の周囲の空気の温度が上がり、この熱は周囲の部品を暖め、最終的には筐体に伝わります。抵抗の周囲に適切な通気が確保できていなければ、筐体内は筐体表面より高い温度になります。発生した熱は最終的に筐体の外面から放熱されるのですから、余分な回り道を辿るよりは、抵抗の熱を効率良く筐体に伝える方が良いはずです。

  アマチュアの製作などで、大きな放熱器を密閉した筐体内に取り付けたものがありますが、これはまったく無意味です。放熱器を外面に付けるか筐体内の通気を確保する、あるいは筐体自体を放熱器として扱って熱の流れを作るべきです。

 写真の12G-B3/7シングルアンプはカーソド抵抗器の発熱が大きいです。低μでバイアスが深く、シングルアンプで電流が大きいです。概算で1.4Wぐらい。通常の炭素皮膜(金属皮膜も同様)は外装の耐熱性が低いので大型の物を使っても長時間の使用では焼け焦げの心配があります。そのため耐熱性が高いセメント抵抗を使用しました。小型であるかわり表面からの放散だけでは温度が高くなるので、リード線からの放熱も利用します。取り付けには磁器製のタイトラグを使用し、熱が筐体に伝わるようにしました。ラグの足に近い側に抵抗を置き、熱が嫌いなコンデンサは少し離してあります。

 G2に直列に入っている抵抗は手持ちの難燃性皮膜の抵抗を使いました。外装の耐圧の不安はありますが、電流が小さいので小型の炭素皮膜で済みます。