ラベル 12G-B3 の投稿を表示しています。 すべての投稿を表示
ラベル 12G-B3 の投稿を表示しています。 すべての投稿を表示

2019年9月29日日曜日

昔に12G-B7の3結に手を出していたとしたら 仮想ゲーム(2)

あらためて見ると、12G-B3/B7の3結って、すくなくとも6G-A4や6R-A8よりは2A3似近い。そこで2A3の代用にしようと思いついた・・・という仮定で思考ゲーム。

 12G-B7が現役だった頃、私はまだ雑誌の記事を見ながら継ぎ接ぎする程度の知恵しか働きませんでした。というか、だいたいあの頃のアマチュアの多くはメーカの動作例か雑誌の作例の動作をなぞるようなやり方が普通だったと思います。

 12G-B3は、定格が10Wですから、これを守るとすると2A3の2/3しかありません。しかし6G-B3Aの事も考えると、おそらオーディオ用では12~13Wぐらいで使えるでしょう。12G-B7であれば2A3の代役になりそうです。 その場合も耐圧をいくらと見るかが問題です。偏向管としての規格ではG2の耐圧が250Vと低いです。G1との絶縁で抑えられていると考えるなら、3結の場合もこの電圧に収めるべきです。しかしこの電圧はパルス回路で使うビーム管として、実用的な電流で使える範囲を示しているという見方もできます。これは12G-B3がは200Vである事からも推測されます。おそらく絶縁の点ではもっと行けるはず。そうならば、3結なら300V以上でも行けるでしょう。
 当時は定格ぎりぎり、むしろ多少超過ぐらいが普通だったので、300Vで使うとすると2A3とほぼ互角(250Vだとひとまわり小出力)になます。 

12G-B7 は大型の管です

 2A3と違って12G-B7は傍熱管ですからヒーターの処理が楽です。これはプッシュプルにする場合には効果絶大です。しかも、グリッド抵抗の制限が緩いので、固定バイアスにする場合も楽です。

 AB級プッシュプルの動作を考えます。この場合はバイアスが40Vを越えるぐらいになりそうです。2A3よりは少し低いですが、6CA7や6L6などよりも高いです。これが6G-A4や6R-A8だと半分ぐらいになるので、P-K分割でも何とかなります。メーカーはこのあたりを狙ったのでしょう。
 当時なら大型アンプでドライブ電圧が欲しい場合はカソード結合型(ムラード型)でしょう。問題はB電圧がだいぶ低いこと。普通に初段と反転段を直結にしようとすると電圧配分に苦労しそうです。2A3の場合はここにもう1段入れて電圧を上げたりしている回路を見掛けます。グリッド抵抗の事を考えてカソードフォロワーを挟んだりしている回路もあります。
 もっとも、自己バイアスだとその分B電圧を高くしますから、位相反転段の電圧はもう少し上がるので、それで何とかなるかもしれません。ここから発想して悪知恵を働かせると、固定バイアスのマイナスが50V以上あるはずなので、この分で下へ引くという手がありそうです。そしてせっかくマイナスに引くのだから、やはり初段から差動回路となると思うのですが、当時は考慮外だったでしょう。
 事の発端の6CA7-PPアンプではドライバを2段差動にしました。この回路ではDC安定性の理由で2段を直結にしなかったので、電圧配分の問題はありません。+250Vと-150Vで働かせていますが、この電圧で振幅40Vを得るのは全然問題無いです・・・・

 って、結局このへんの話に戻って来てしまいました。

2019年9月23日月曜日

昔に12G-B7の3結に手を出していたとしたら 仮想ゲーム(1)

あらためて特性図見ると、12G-B3/B7の3結って、6G-A4や6R-A8よりは2A3似近い。現役当時にも注目されていて良さそうな物だと思うけど、昔の雑誌などで見た記憶はない。

 2A3は古典管。使いにくい要素満載。逆に言えば、改良して使い勝手を良くするポイントはたくさんある訳です。ならば、自称2A3の後継という管、あるいは他薦2A3のリリーフ役がいろいろあっても良さそう。

 どうやら6G-A4や6R-A8がウリにしたかったのは、ドライブの感度。感度が低ければドライブ段のゲインが必要です。同出力で考えれば振幅が要ります。これを低い電源電圧で得なければならない。これは同時にバイアスが深い事にもなり、そうなると、自己バイアスで使った時の電源のロスが大きくなります。6G-A4は2A3の倍以上の感度ですから、アマチュア的にはかなりハードルが低くなります。
 しかし、これによりμが高くなり、プレート電流が少なくなり、内部抵抗が上がる。ヘタすると歪みも増える。なんとなく"2A3が良い"という理由から離れてしまうような。

日本の近代的真空管は欧米メーカの技術を元にしています


 自称2A3の後継が期待ハズレなら、他薦はどうだろうか。おそらくそういう方向の動きはあったはずです。でもほとんどその跡が残っていません。多極管の3結は2A3の代替にはならない、あるいは別物という意識だったのでしょうか。

 3結で使うとして、規模的に2A3ぐらいになる管があるでしょうか。オルソンアンプは6F6の3結をパラで使ってます。調べ直すと6F6の3結は2A3の半分に似ています。しかし6V6や6L6の系統は3結では電流が小さくなって出力が取れません。6BQ5も同様。
 6BM8は案外3結μが低く出力が取れますが、元々が小さいので出力は2A3の半分。この上のクラスだと、6CA7や6G-B8。この6G-B8は水平偏向管の出身です。ならば、アマチュア的には水平偏向管の3結でオーディオアンプは有りだったのではないかしら。

 プレート損失は-B7なら2A3と同等。3結のμは同程度。電流が多く流れて内部抵抗が少し低い。ヒーター電力は少し大きいですが、傍熱なので扱いやすさは段違い。グリッドバイアスの抵抗を高くできるのは大きなメリットと思います。プレートキャップが必要ですが、当時であれば入手は容易。当時の価格は大差なさそうですが、-B7はテレビのジャンクという手もありましたから、アマチュア的には面白そうなのですが。

注意: 記載の数値は"てきとう"です。ちゃんと計算してません。


 12G-B3や-B7が現役だった頃。これらを3結にして有名な2A3の代替に使ってアンプを作る・・・という仮定で思考ゲームです。(あくまで思考ゲームです。)今回製作したアンプは、12G-B3をかなり軽く使って、ドライブは半導体です。これは現代の発想。当時の常識に合わせたな回路を考えます。

 当時を想定していますから、半導体は電源のダイオード以外使いません。-B7を定格一杯の15Wで使います。出力トランスは2A3用が使えそうです。(G2の耐圧を考慮すると)電源電圧は2A3より低目で250V~300Vぐらいでしょう。これで少し多目の60~70mmAほど流して・・・やはりほとんど2A3の置き換えです。

 バイアスが少し浅くて30V程度。当時の使い方を想定すると、適度のNFかけるのに必要なゲインは100倍ぐらい。これを低いB電圧で得る。そのためには6AU6とかgmの高い5極管を使う。しかしこうするとインピーダンスが高くなって、3結の出力管をドライブするのが苦しくなるので、3極管のカソードフォロワーを入れる。これに12AU7の半分を使うのは・・・ならば、5極3極の複合管の方が合理的。6BL8とか6AN8とかちょうど良さそうです。B電圧が(150Vでは厳しいですが)200Vほどあれば必要な振幅は得られそうです。

 って、今回半導体で作った回路と同じような物になりました。これなら、当時のラジオ少年でも製作できたかしら? でも、当時はカソードフォロワーはあまり一般的で無かったですから、12AU7+12AU7で3段アンプにして発振に悩まされたような気がします。

2019年9月16日月曜日

音声出力用3極管

 昔から熱烈な3極管支持者はたくさんいます。使い方にもよるけれど、3極管と多極管は違う音がするのは確か。問題はその差をどう考えるか。

 音声出力用の5極管は純粋なオーディオ用はもちろん、小電力の小型セットから業務用システムまでいろんな所に使われていて、用途に合わせた大小さまざまの音声出力用の管が作られました。
 熱烈な支持者があるのだから、当然3極管には音声出力用に特化した性能の管がいくつも作られていて良いはずです。しかし、いつでも多く出て来る管は 古典管の2A3。それしか無いのか、代え難い何かがあるのか。だから使いにくくても我慢して使う。そのうちに、これを使いこなすのが目標になり現代に至ったという感じかもしれない。

12G-B3 と 6BX7 / 発熱の大きな6BX7の方が管が小さいです。


  あらためて2A3のスペックを見てみます。直熱管でヒーターが2.5Vの2.5Aですから、傍熱管なら6.3Vの1~1.5Aぐらいでしょうか。許容損失は15Wありますが、Ebが300Vです。内部抵抗が0.8Kと低いですがμが4と低いです。それにともなってバイアスがたいへん深くなります。グリッド電流が流れやすいらしく、グリッド抵抗が自己バイアスなら500Kですが固定バイアスなら50KΩとなっています。つまり、ヒーターの事は別にしても、かなり使いにくい管です。

 『和製2A3』と言われる6G-A4をあらためて見直すと、簡単に2A3程度の出力が得られる3極管という感じで、スペック的にはまったく別物。Ppは少し小さい13Wで、Ebが350Vと高いです。しかし、元の6BX7から引き継いで、μが10と高く内部抵抗も1.4Kあります。その分でバイアスが半分ほどで済みます。グリッド抵抗が固定バイアスでも250Kなので、ドライブのしやすさは段違いです。
 これが6R-A8だとPpが15Wで2A3と同じですが、管形を考えると厳しそうです。μが10は6G-A4と同じですが、内部抵抗は少し低い。gmが少し高く、バイアスが低くなってます。最大出力は2A3と互角というのですが、それにはぎりぎり高い電圧をかける必要があります。やはり2A3の後継代替ではなく全くの別物。なにより、この6R-A8はビーム管の6R-B10を内部で3結にして生まれた管。純粋の3極管では無いという意見も。

 有名なオルソンアンプは6F6の3結のパラ。確かに6F6の3結は2A3の半分に似ている。純粋の3極管にこだわらなければ5極管の3結で済む。だから音声出力用三極管の新種は需要が低かった??

 12G-B7を3結にすると、Ppの15Wは2A3と互角(12G-B3は10Wで考えておくべきでしよう)。μは6ぐらいですが、内部抵抗はひとまわり低く0.5KΩぐらい。つまり2A3より低い電圧で電流が流れる管。3結の耐圧は不明ですが、低い電圧で電流が流れますから、プレート損失で先に抑えられます。3結時のグリッド抵抗は不明ですが、出自を考えるとおそらく固定バイアスでも250K以下という事は無いでしょう。バイアスが深い分、ドライブ電圧が要ります。B電圧が低くなる分を考えても、回路的な難しさは2A3より低い感じです。12G-B3/B7が現役だった頃、このような使い方に気付いた人もいたはずです。

2019年8月8日木曜日

12G-B3/B7 シングルアンプ 完成

子ども時代に廃品のテレビの中でよく見掛けた管。縁あってこれでオーディオアンプを作ることになりました。長年の電気系工作の締めくくりにふさわしい物になりました。

 ゲルマラジオから始まって、真空管でラジオを作り、アンプに作り替え。それからトランジスタに移り、オペアンプに至る。デジタルの横道に逸れて、そのまましばらくマイコン関係に引きずり回される。それが一段落して、ふたたび真空管でアンプを作ることに。

 手持ち部品を浚って、足りない物を拾い出して日本橋をひと巡り。漏れなく揃えたはずなのに、やはり勘違いがありました。通販という手もあるけど、送料も要るし時間もかかる。 それで今日は日本橋の部品屋へ。交通費がかかって高価な抵抗器になりました。それを取り付けて、あらためて試運転。

 子ども時代には、それこそ最初のゲルマラジオのダイオードからして、廃棄テレビを解体して入手したもの。当時は神戸の片隅に住んでいました。神戸市内に電子部品を扱う店がいくつかありました。しかしそこまで行くのは時間も交通費もかかります。大物はまとめて買うけれど、実験と称してあちこち改造して遊ぶには抵抗やコンデンサがいろいろ要ります。いちばん手軽にこれらを入手する方法が廃品テレビなどの解体。倹約にもなります。しかし、当時はテレビの中の真空管を使おうと思うことはありませんでした。それがぐるっと1周回って風変りなアンプになりました。

外観を整えました。12G-B7を挿してみました。
  振り返れば、真空管とトランジスタの比較論争がありました。そこから派生してOTLからOCLを経てDCアンプとか広帯域という方向も。まだモノラル派が生き残っている中で4チャンネルステレオという物も現れました。そうなると、周波数特性と歪率だけで済ませていたのが、位相特性や混変調も考えなければならなくなる。その折々に過去の亡霊のように現れた『3極管vs5極管』の論争。それはその後の縦型FETやMOSFETの時にも。

 縁でやって来た12G-B7。そこから始まった今回のアンプ製作。結局、3結でシングルアンプになりました。3極管のシングルアンプは 6BX7を片方づつ使ったのがあります。規模的には大差無い物で、設計の基本方針も同じです。使った抵抗やコンデンサはどちらも普通のトランジスタ用。出力トランスも最近の普通クラスの製品。でも、出て来た音は全然違う傾向。どちらが良いとかではなく、それぞれ好みか気分という微妙な違い。

 試運転のあとは、完熟運転。その合間にwebページ用の写真撮影。入手した管は12G-B3と12G-B7で、メーカーはいろいろ。念のため差し替えてチェックします。

2019年8月7日水曜日

12G-B3/B7 シングルアンプ 製作ほぼ完了

子ども時代よく見掛けたテレビの水平偏向出力管。これでオーディオアンプを作る。子ども時代には考えもしなかった事。

 けっこう見掛けたけれど使う事など全然考えなかった水平出力管。やはり子ども時代に手を出さなくて良かったです。

 水平偏向管はテレビの中で最大の真空管。プレートキャップまで含めると6CA7より背が高いです。これを10mm下げて取り付けましたが、それでもけっこうな背丈。これが12G-B7になると太さも半端じゃない。使用したトランスも他より大柄なので、ずいぶん存在感のある物になりました。

動作試験中 日立製12G-B3を挿してます

 昨日でシャシーに取り付ける部品は全部付いて、そのあたりの配線もすべて終わってました。そのかわり残ってたのがドライバの基板まわり。
 私室用の小型アンプはドライバ回路が半導体の物がいくつもあります。管を載せるスペース的な事もありますが、発熱低減には効果的です。当然、管が大きくて発熱も多いこのアンプのドライバは半導体。低い電圧で振幅とゲインが必要ですから、真空管で作ろうとするとなかなか難しそうです。
 トランジスタ回路としては簡単な物ですが、ラグ板に架空配線は難しそうです。やはり穴開き基板に盛りつけるのが妥当でしょう。ガラスエポキシのスルーホール基板なんて物もかなり安く買えるようになりましたから。

ドライバ部が基板に載っているので中はすっきりしています。(NF関係が未配線です)

  基板に取り付ける部品はすべてトランジスタ用。このあたりは、パソ関係も含めてあれこれ作って慣れた工作。手もとに使い残った部品をなるべく使うようにしました。電解コンはすべて新しい物ですが、フィルム系コンデンサは使い残りが多いです。結合コンデンサは2個並列にしています。FETは以前に袋買いした残り。トランジスタは6Z-P1シングルの時に念のため余分に買った残り。
 不足部品を買いに行く直前に定数を見直した関係で、 使えると思っていて見間違っていたのがありました。幸いというか、NF用の抵抗なので、とりあえずここは後で取り付けることにして空けてあります。明日でも買いに行く時間が取れるでしょうか。

  という次第で、負帰還無しの状態で、ひととおり動作チェックと音出し。電源電圧が予定より少し低かった事と、出力管の電流が特性図より少し小さいことで、出力管の損失は約7Wになりました。それ以外は想定の範囲内。
 負帰還無しのまま、しばらく音出しを続けました。真空管やシャシーの温度も熱くて困るほどではありません。最初は何ともバランスの悪い音でしたが、1時間ほど経つとけっこう普通の音になりました。裸のシングルアンプとしては意外なほど、低音もしっかり鳴りますし高音も透明感があります。有名な2A3の音は覚えてませんが、12G-B3の3結はけっこうイケるのかも。

 このまましばらく鳴らして、(正規にNFをかけて)外観を仕上げれば完成です。

2019年8月6日火曜日

12G-B3/B7 シングルアンプ 製作途中

子ども時代、身近にあったのに使う事なんて全然考えなかった管。これでアンプを作ろうとしてるけど、意外と手強い。

 聴き比べるつもりで私室用のアンプに仕立ててます。当然同じシャシーの上に同じような部品配置。しかし、少しの違いの積み重なりが案外手強い状態になりました。

シャシーに付く部品はひととおり全部載りました。


 真空管が大きいです。プレートキャップが付きますから、その配線も要ります。特に12G-B7はベースも普通のGT管より大きいです。発熱の大きな管なので通気も考えなければなりません。バイアスが深くて電流が大きいですから、カソード抵抗の発熱も大きくなります。電源のフィルタの抵抗も発熱します。既製品で使える物を選んだ関係で、電源トランスはかなり大柄です。出力トランスも大きいです。 あれこれやりくりして、何とかぎりぎりぴっちり納まった感じです。

発熱の大きな抵抗はタイトラグを介して取り付けています。

 狭い部分があるので、部品を取り付けは順番を考えてしなければなりません。後から付けにくい線は先にハンダ付けしておきます。今までにいくつか製作した際の失敗を振り返りながら少しづつ進めますが、やはり何箇所か手戻りが出ます。位置修正が必要な箇所もありました。

 それでも一応シャシーに付く部品は全部付きました。出力管まわりは、すべてサプパネルに載ってます。出力トランスの引き出し線の余りはシールド板の下で処理できています。2次側の線はタイトラグで中継して、ヘッドホンジャックからスピーカー端子へと、このあたりは他のアンプと共通の処理です。電源まわりは、結局1枚のタイトラグに載せるようにしました。

 あとは、ドライバ部の基板を作って、シールド板の上に取り付けるだけ。

2019年8月2日金曜日

12G-B3/B7 シングルアンプ 製作開始

子ども時代、身近にあったのに使おうなんて全然考えなかった管。今ごろになってそれでアンプを作るという。

 考えてみれば、長年の電気系工作の締めくくりにふさわしいのかもしれません。急ぐ事はありませんから、あれこれ振り返りながら少しづつ作ります。なんとなく勢いであれこれ作って来た私室用小型アンプもこれで打ち止めですから、それぞれの製作の際の工夫も盛り込みます。

 私室用の小型アンプはすべて最初に作った12BH7A-PPで使ったのと同じシャシーに載せています。前面と背面の配置も同じに揃えています。このアンプもそれにならいます。
 12BH7A-PPを製作する際には、なるべく小型化する意図で部品が載るぎりぎりの大きさのシャシーを選びました。その後製作した物は、部品が小型であったり回路の一部に半導体を使ったりで、このシャシーで余裕がありました。今回製作する 12G-B3/B7アンプもドライバは半導体ですが、管自体が大きくトランスも大きいのでシャシー上は窮屈です。そして真空管の発熱も大きいので、その配慮も要ります。

 シャシーにグラフ用紙を貼って、部品とネジを書き込んで位置を調整しました。前面はあとで文字を印刷した透明ビニルを貼りますから、その原稿を紙に印刷して貼り付けました。 

部品を載せて干渉が無いか位置を再確認します

 重量バランスの点では良くないですが、6Z-P1シングルの経験から管の見栄えを考えて『真空管を前に並べて後ろに出力トランスを置く』配置を考えました。並べてみると、横幅にぎりぎり収まりました。
 この真空管は発熱が大きいですから、管壁が熱くなりすぎないように通気を確保します。そのために、サブパネルを使用して真空管を1段下げて取り付けます。これは背の高い6BM8の見栄えを改善するために使った手法で、6AQ5シングルアンプでは熱対策として使用しました。6BM8はMT管なのでGT管用の30φの穴で済んだのですが、今度使う12G-B7はベースが太いですからだいぶ大きな穴が要ります。左側の真空管は出力トランスの中心より少し右にずれていますが、これはサブパネルがヘッドホンジャックと干渉しないようにするためです。
 電源のケミコンには基板付け用のコンデンサを使います。入手の点から太短い物になったので、廃品のブロックコンの中身を抜いて2個重ねて入れます。つまり昔風の2個入りコンデンサと同じ感じで、電源トランスの前に1個だけ立つ形になります。


穴開け加工したシャシー

 課題は真空管を沈めるための大きな丸穴をどうやって開けるか。このシャシーはアルミが薄いので、力のかかる加工だと歪む心配があります。結局、電動の糸ノコを使うことにしました。そのため、この部分は内側にも位置を書いた紙を貼りました。その流れで、電源トランスの角穴も電動の糸ノコで切りました。ブロックコンの穴は30φで済むのでここはシャシーパンチを使いました。あとは、普通にドリルとヤスリの作業。

 穴開けが済んだら水洗いして、ステンレスたわしでヘアライン状に仕上げ。これは加工時のキズを隠すだけでなく、使用中のキズや汚れが目立ちにくくなる効果もあります。


 次はサブバネルの加工。それから電源まわり?それともドライバ回路の基板か?
 

2019年6月17日月曜日

12G-B3/B7の3結アンプに使うトランス

水平偏向管を使ってアンプを作る。子ども時代に思いついたとしても、大きな難関となったと思われるのはトランス。今ならクリアできそうです。

 12G-B3/B7は3結にすると、低い電圧で大電流が流れる特徴はそのまま、 素直な特性になるようです。3極管で電圧の割に電流が大きいというのは内部抵抗が低いという事。これはそれで有名な2A3以上です。しかしそうなると低インピーダンスで大電流を流せる出力トランスが必要です。2A3用は3.5KΩですが、最適なインピーダンスはこれよりも低くなります。昔のトランスメーカーのカタログには、そんなトランスは載ってませんでした。電源100Vをそのまま半波整流するトランスレスラジオ用の管は2KΩぐらいのトランスを使う物もありましたが、これらでは電流が足りません。

 現在、一般アマチュア向けに販売されている真空管用の出力トランスの定格はネットで調べられます。 ひととおり探してみると、「春日無線変圧器」と「東栄変成器」の製品で2KΩで5Wという仕様の製品がありました。どちらも重畳電流は定格内です(東栄の方が若干大きい)。
 これらは通販可能ですが、秋葉原に実店舗もあります。所用で東京に行ったついでに東栄に寄って見ました。あれば買って帰る程度のつもりでしたが、幸い店頭在庫がありました。型番はOT-23SRで1次側が3Kと2KΩで許容重畳電流が100mAあります。購入の際に聞いた話しでは、やはりあまり売れない製品だそうです。
 
東栄変成器のトランスを使うことになりました

 難関の出力トランスがクリアできたので、検討したプランどおりに進められます。

 電源トランスはいくつかの方法が可能ですが、今回はあまり面倒な事はせずに既製品をそのまま使うことにしました。使えそうな製品は 「春日無線変圧器」と「東栄変成器」にあり、どちらも規格はほぼ同程度です。出力トランスと一緒に購入したので、東栄のPT-22Nを使うことになりました。B電源が140V(CT)で220mA、ヒーターは6.3Vの2Aが2つ。容量的には余裕たっぷりです。

 という具合で、要となるトランスが揃いましたから、あとは少しづつゆっくり進めるだけです。

2019年5月19日日曜日

12G-B3/B7 オーディオアンプにする (2)

多くの家庭用テレビで使われた12G-B7。子ども時代には完全にスルーしてたけど、あらためてアンプにする事にしました。

 しらべてみると、真空管マニュアルに12G-B3の3結の特性図が載っていました。原型と言われる25E5も載っています。見比べると微妙に違う感じもしますが、設計上問題になるほどの差ではありません。おそらく12G-B7も同じような感じでしょう。ここから設計を始めます。25E5のSPICEのデータがありましたから、これも併用してチェックすることにします。

 全体の発熱量を抑える必要もあるので、定格に対して余裕を見てプレート損失を8W程度で考えます。これを基にB電圧を決めます。
 400Ω負荷のOTLアンプにも使われた管です。3結にしても低電圧で大電流が流れます。 P-K間約150Vで60mmAほど。パイアスが約-22Vになります。このあたりの動作で使える出力トランスを探すと、東栄変成器と春日無線の製品にインピーダンス2KΩの物がありました。重畳電流も許容範囲内です。 (子ども時代にこの管でアンプを作ろうとした場合、適した出力トランスを入手が難しかったと思います。)
 電源トランスは、ヒーターの12.6Vは6.3Vの巻き線2つを直列にすれば済みますが、B電圧が低くて電流が大きい物が必要です。12AU7-PPアンプの要領で絶縁トランスを利用することもできそうです。 特注という手もありますが、探すと(容量が少し過大ですが)使える既製品がありました。

水平偏向出力管 12G-B7, 12G-B3, 25E5

 ドライバはなるべくシンプルな回路にします。出力管が大きいのでシャシー上にはほとんど余裕がありませんから、半導体で構成します。ヒーターが無いので発熱を抑える意味でも効果的です。6Z-P1シングルアンプと同様にJ-FETと高耐圧のトランジスタのカスコードを使うことを考えます。

 バイアスが深いという事は入力に大きな振幅が要るという事です。そして、その分感度が低いという事にもなります。出力段のゲインは約1/4倍。適量のNFをかけて、私室用アンプ基準の仕上がりゲイン約15倍にするには、ドライバの裸ゲインは200倍以上要ります。これを低いB電圧で確保しなければなりません。そのためには電流を少な目にして負荷抵抗を大きくするのですが、出力管を3結で使うので(G2の遮蔽効果が効かないので)入力容量が大きくなります。これをカバーするため、エミッタフォロワを挟むことにします。(子ども時代ならば真空管で作ることになる訳で、これはかなり苦しかったと思います。)

 3極管接続する場合、教科書的にはG2をそのままプレートに繋ぐのですが、安全のため直列に抵抗を入れます。大電流の流れる5極管やビーム管では、寄生振動が発生する事があり、G2を焼損するトラブルの原因に挙げられます。直列抵抗はこれを防止するのに有効らしいです。おそらくこれはG2のインピーダンスを上げる効果でしょう。この点では、3結の場合こそ抵抗を入るべきだと思います。6R-A8や6C-A10などは異常発振や異常発熱が起きやすいと言われましたが、これらがビーム管を内部で3結にした構 造であることと関係がありそうです。

 私室用の小型アンプの一員として作るのですから、前面と背面を同じに揃えます。これまでの製作では手持ちを極力活用して来ましたが、すでにほとんど使いきっているので新規購入する物が多くなりそうです。大阪日本橋で揃わなければ秋葉原あるいは通販で購入することになります。
 おそらく難関となるのは、プレートキャップと電源のコンデンサ。これらは外観にも関わるので悩ましいです。

2019年5月18日土曜日

12G-B3/B7 オーディオアンプにする (1)

子ども時代、手近にあったけど手を出すことは無かった真空管。今さらだけどアンプにしてみようと思います。

 縁でやって来た真空管は12G-B7。部品取りに解体した廃品テレビの中で見た記憶があります。当時はこれを使おうとは思いませんでしたが、もしこれを使ったとするとどんなオーディオアンプになったでしょうか。

 あらためて調べてみると、6.3V管の6G-B3A/B7のオーディオ用としての使用例がいくつか出て来ました。そのままピーム管のプッシュプルで使うと、300V程度のB電圧で40W級のアンプになるようです。しかし規模的に子どもの手に負える物では無さそうですし、このような用途ならば6CA7や6L6の方が使いやすそうです。雑誌などの製作記事には400Ωスピーカー用のSEPPアンプがいくつかありましたが、真似してジャンク部品で作れるような物ではありません。
 12G-B3/B7は、低い電圧で大電流を流すように作られた管で、ビーム管としての特性は綺麗ではありません。この点からはシングルアンプは不適当な気がします。ところが、規格表にある3結の時の特性図はたいへん素直です。有名な2A3には及ばなくても、現代的には使いやすい感じです。どうやら3結で低内部抵抗の3極管として使う方が面白そうです。

 シングルで使うならメーカーや使用歴が違っても支障無いです。ステレオにするので相方が最低1本、継続的に使うなら数本は必要です。テレビで使われて多少くたびれた管でも良ので、安い出物があるか探して見ました。
 真空管テレビが終わると保守用に確保されていた真空管はあちこちで投げ売り状態になりました。その中には12G-B3やB7もありました。その後作例がいくつか紹介されたこともあってか、かなり価格が上がったと聞いていました。しかしあらためて探して見ると、開封品(ほとんど使っていない?)の12B-B3と12G-B7がずいぶん安価に出ているのを見つけました。

12G-B3 と 12G-B7 いろいろ


 小ネタ半分なので、あれこれ繋ぎ替えて聴き比べできる私室用のアンプにします。同じシャシーを使って外観を揃えます。仕上がりゲインも揃えます。
 ドライバは、当時のテレビ管の仲間から選ぶとすると、中間周波増幅に多く使われた3CB6あたりでしょうか。しかし今回は大きさと総発熱量の関係から半導体を使います。6Z-P1シングルアンプで使用した手法で、J-FETとトランジスタをカスコードにすると5極管に似た特性になります。

 私室用のアンプは棚の中で使用するので発熱が大きすぎると困ります。12G-B3の3結の許容損失は12Wあるいは13Wという説がありますが、規格上は原型の25E5と同じ10Wです。ここからさらに軽減して約8Wで考えます。しかしテレビの水平偏向管なのでヒーター電力が約8Wもあります。このため管2本分で合計32W程度。電流が大きくバイアス電圧が大きい管です。これを自己バイアスで使うのでカソード抵抗の発熱が大きくなります。全体では常用している12BH7A-PPアンプよりだいぶ発熱が大きいことになりますが、この程度なら、真夏でなければそれほど困ることは無いと思います。

2019年5月12日日曜日

ビーム管

2極の真空管に格子を加えて制御機能を持たせた3極管。さらに極を追加した4極管。しかし4極管は優れた特徴を持つかわり、欠点もありました。

 大型の出力管はビーム管が多いです。シンポル図ではSGとプレートの間に翼のような物が描かれます。これはビーム形成板と呼ばれますが、これがビームを作っている訳では無さそうです。

 4極管の説明について、プレートとグリッドの間にもうひとつグリッドを追加したと説明される事が昔から多いと思います。確かに高周波増幅や小信号増幅で(G2電圧がプレートよりかなり低い動作で)は、静電シールド効果が目立つのでスクリーングリッド(:遮蔽格子)という名が合うのかもしれません。一方、プレート電圧が低い領域ではG2が積極的にカソードの電子を引っ張っているので、加速電極だという解説もあります。この場合もプレートの電圧の変化を隠しているという意味の説明が付きます。
 しかし実態はかなり違うのではないでしょうか。特性の点で効いてくるのはプレートの位置や大きさではなく、G2の位置とその形状ですから、3極管のプレートを透け透けにして、その外側に第二のプレート置いたと考えるべきなのではないでしょうか。そう考えると、4極管は3極管のカスコード接続(上側は中途半端なA2級動作をしている)と見なせないでしょうか。

 4極管の問題のひとつはG2に流れ込んでしまう電流。G2の電圧がプレートより高くなる区間が広くなる大振幅ほど影響が大きくなります。これを軽減する工夫のひとつがグリッドの目合わせ。これにより、G1で絞られた電子流がそのまま勢いよく直進してプレートに当たる。

6L6-GC と 12G-B7 遠縁の親戚関係

 ビーム管の要はグリッドの目合わせ。この電子流が停滞せずにプレートに流れ込むには、G2とプレートの間隔も重要です。しかしグリッド支柱の付近はビームが整わず、プレートとの間隔も取れません。ビーム形成板はこの部分を隠しているように見えます。ビーム管はグリッドは微妙ですが、プレートはかなり自由が利くようです。

 ビーム管の古典といわれるのが6L6。12G-B3/B7系のライバルにあたる6BQ6の元を遡るとここに至るらしいです。メタル管からガラス管になって6L6-Gとなり、プレート引き出しを頂部に移して送信管になったのが807。これそのものもテレビの水平偏向にも使われたらしいですが、初期の専用管の6BG6はパルス回路用に耐圧を上げ電流を増した物のようです。

 この6BQ6のプレートを拡大して容量を増したのが6DQ6で、これに習って12G-B3のプレートを拡大した物が12G-B7です。一方、この過程を追って6L6の特性はそのままに容量を大きくして生まれたのが6L6-GCらしいです。だから6L6-GCの外観は水平偏向管とも少し似ています。
 製造時期は少し違いますが、同じ東芝製を並べてみました。プレートは6L6-GCの方が少し長く、12G-B7の方が少し厚いです。12G-B7のカソードが大きいのが目立つほかは、内部の構造はよく似ています。

2019年5月2日木曜日

水平偏向出力管 12G-B7と12G-B3


縁でやって来た12G-B7。これはテレビの水平偏向出力管。昔のテレビで映像が映る部分はブラウン管と呼ばれる巨大な真空管。

 プラウン管は、おおまかに言えば円錐と四角錐の中間のような形。底面を手前にして横倒しになっています。奥側にある頂点から手前のアノードへ電子が飛んでそこに塗られた蛍光体に当たると発光する。この電子の流れを上下左右に振り回して映像を描く。テレビのブラウン管では、電磁石を使って(フレミングの法則)電子の流れを振り回していました。これが偏向。日米のテレビでは、毎秒30枚の画像を送って来ますが、1画面を1ラインずらして2回で描くので、垂直の動きは60Hz。1画面は水平の線525本で描かれるので、水平の動きは約15kになります。音声の帯域の上下ぎりぎりの所にうまく設定されているように思います。
 強力な電磁石を駆動するのですから、偏向管が扱う電力はどうしても大きくなります。特に高い周波数で大振幅が必要な水平偏向はたいへんです。さらにこの回路はブラウン管の電子流となる高圧発生も兼ねています。そのため、ここには大型のビーム管が使われました。

日本式型番の真空管 大きさは似ていますが能力は4倍ほど違います

 12G-B3はテレビの水平偏向出力用の真空管です。型番の示すように日本独自の規格の真空管です。家庭用のテレビには日本的な事情に合わせて作られた日本独自の真空管がいろいろ使われていました。
 初期の水平偏向出力には6BQ6など米国系の系統の管が使われたようです。欧州系の真空管を作っていた松下はPL36/25E5を製造しましたが、これは特殊な構造のフレートを持っていて、低い電圧で大電流が流せます。これは電源電圧が低い日本には好都合。しかし25E5は欧州のトランスレス管でヒーターが300mA。日本向きの600mA管が欲しい・・・

 そこで東芝が作ったのが12G-B3。25E5のヒーターを100V用に600mAに変更したような管。12G-B3は、昭和30年代を通して日本の各社のテレビに使用され、多くのメーカーが大量に生産しました。
 特性図では原型の25E5と微妙に違いがありますが、偏向用としては同特性と言われます。定格も少し違いますが、当時の定格の考え方はかなりあいまいだったので、実質的には同等のようです。どちらも長期間に少しづつ改良され、製造時期やメーカーによって構造に違いがあり、実際の定格は途中で少し大きくなっているという話もあります。
 その後、テレビの広角化と大画面化にともなってより大きな偏向電力が必要になり、12G-B3をひとまわり大型化した12G-B7が登場しました。管が太くなりプレートも大型になっていますが、(偏向用としては)特性を同じに揃えてあり、修理の際にそのまま差し替えて長寿命になるということでした。

 この系統の管はテレビではスニペッツが出やすいという欠点があったようです。特殊なプレート構造の関係か、プレート電圧の低い領域の特性が悪いのが原因らしいです。これはビーム管としてシングルアンプに使う場合には注意が要りそうです。

2019年4月24日水曜日

テレビ用真空管

私の子ども時代のテレビは真空管。しかしそこに使用されていた真空管はラジオやアンプなどでは見掛けない型番の物ばかりでした。

 最近になって、12G-B7という大型の真空管が1本やって来ました。保守用の使い残しでしょうか、箱は水濡れ跡があり半ば潰れていますが、管自体は新品のようです。これは日本のテレビ用の真空管で、子ども時代に部品取りに解体した廃棄テレビの中でも見掛けた記憶があります。これも何かの縁。あらためてしらべてみることにしました。

 子ども自体には真空管でラジオやアンプを作って遊びました。その際、廃棄テレビからいろいろ部品取りしたけど、真空管を使う事は考えなかったです。

12G-B7は大型化して 12G-B3の許容損失を増した物。箱には定価は1300円と書かれています。


 昔の感覚では真空管はそれぞれ用途が 決まっている物。特にテレビは真空管をうまく組み合わせて少ない本数で効率よく高性能を得るのが工夫のしどころだったようです。

 しかし、テレビ用の真空管の中にはラジオやオーディオに使われていた管を原型にした物もありますし、逆にテレビ出身でアンプなどに使われるようになった管もあります。だから、当時ある程度関心と知識があれば、テレビ用の管を使って遊ぶ事もできたかもしれません。
 ところが、この頃は家庭のラジオやステレオなどはトランジスタ化が進んでいて、ラジオ用など定番の真空管のバルク物はかなり安く出回っていましたから、テレビ用の真空管を無理して使う必要はありませんでした。そのためでしょうか、雑誌などを見直してもテレビ用の管使う話は(無線関係を除くと)ほとんど出て来ません。

 あらためて見直すと面白そうなテレビ用真空管がいくつかありますが、当時これらをハナから除外してしまった一番の理由はヒーター電圧。当時の一般的なテレビは、真空管のヒーター を直列にして電源100Vを加えるトランスレス(電源トランスを使わない)でした。これは軽量化と安価低減にもなりますが、狭い筐体で漏洩磁束の影響を避けるのにたいへん効果的だったと思われます。このため多くの管はヒーター電圧が6.3Vではなかったのです。(当時は3.15V管を2本直列したり、6.3Vの巻線を直列にして12.6Vにする事は思いつかなかったです。)